Mutations in a Cyclic Nucleotide–Gated Channel Lead to Abnormal Thermosensation and Chemosensation in C. elegans

نویسندگان

  • Hidetoshi Komatsu
  • Ikue Mori
  • Jeong-Seop Rhee
  • Norio Akaike
  • Yasumi Ohshima
چکیده

The C. elegans tax-4 mutants are abnormal in multiple sensory behaviors: they fail to respond to temperature or to water-soluble or volatile chemical attractants. We show that the predicted tax-4 gene product is highly homologous to vertebrate cyclic nucleotide-gated channels. Tax-4 protein expressed in cultured cells functions as a cyclic nucleotide-gated channel. The green fluorescent protein (GFP)-tagged functional Tax-4 protein is expressed in thermosensory, gustatory, and olfactory neurons mediating all the sensory behaviors affected by the tax-4 mutations. The Tax-4::GFP fusion is partly localized at the sensory endings of these neurons. The results suggest that a cyclic nucleotide-gated channel is required for thermosensation and chemosensation and that cGMP is an important intracellular messenger in C. elegans sensory transduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A cyclic nucleotide-gated channel inhibits sensory axon outgrowth in larval and adult Caenorhabditis elegans: a distinct pathway for maintenance of sensory axon structure.

The tax-2 and tax-4 genes of C. elegans encode two subunits of a cyclic nucleotide-gated channel that is required for chemosensation, thermosensation and normal axon outgrowth of some sensory neurons. Here we show that, in tax-2 and tax-4 mutants, young larvae have superficially normal axons, but axon outgrowth resumes in inappropriate regions in late larval stages. Using a temperature-sensitiv...

متن کامل

A Putative Cyclic Nucleotide–Gated Channel Is Required for Sensory Development and Function in C. elegans

In vertebrate visual and olfactory systems, a cyclic nucleotide-gated channel couples receptor activation to electrical activity of the sensory neurons. The Caenorhabditis elegans tax-2 gene is required for some forms of olfaction, for chemosensation of salts, and for thermosensation. We show here that tax-2 encodes a predicted subunit of a cyclic nucleotide-gated channel that is expressed in o...

متن کامل

Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans.

The nematode Caenorhabditis elegans senses temperature primarily via the AFD thermosensory neurons in the head. The response to temperature can be observed as a behavior called thermotaxis on thermal gradients. It has been shown that a cyclic nucleotide-gated ion channel (CNG channel) plays a critical role in thermosensation in AFD. To further identify the thermosensory mechanisms in AFD, we at...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1996